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Abstract

In this paper we present a series of dynamic semantics for imperatives in
the framework of update semantics, and specify several alternative logics for im-
peratives. In these semantics the consistency problem and Ross’s paradox have
straightforward solutions. All the work is carried out based on the correspondence
between imperatives and force structures. According to different ways of dealing
with compatibility between imperatives, we give a few choices of defining the no-
tion of consistency for imperatives. Meaning of imperatives is an update function
on force structures, which is also dependent on compatibility. Entailment for im-
peratives is reduced to some relation between force structures. We also give some
choices of the notion of entailment, each of which is coincident with a certain kind
of compatibility

1 Introduction

1.1 Imperatives
In English imperatives are roughly characterized as sentences which do not have overt
subjects, and have verbs in the bare form1. Imperatives may express different speech
acts, such as command, prohibition, request, and even curse. Here are some examples2:

(1) a. Pull over your car! (command)

b. Don’t go to the party! (prohibition)

c. Help me with my bicycle! (request)

d. Have fun! (wish)

e. Go to hell! (curse)
∗This paper was supported by Chinese Scholarship Council and the National Social Science Foundation

of China, grant No. 07BZX047. This research was under the supervision by Dr. Maria Aloni and Prof. Frank
Veltman. I’m indebted to them very much. I would also like to express my gratitude to my supervisor at
Peking University, Prof. Beihai Zhou, who gave me much support to this research. I’m profoundly grateful to
Prof. Johan van Benthem, who kindly offered me the opportunity to study at ILLC. This paper also benefited
tremendously from Dr. Xirong Li and Dr. Yanjing Wang. Of course, all errors are my own.

1See Han [3] for extensive refinements and arguments about this characterization.This characterization
may have some problems, and see Russell [9] for more discussions.

2Some of these examples are taken from Schwager [10]. Note that which speech act an imperative
expresses is context-dependent.
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But generally speaking, imperatives are used by speakers to change the world by in-
fluencing the behaviors of addressees, not to describe the world. In this sense, they
don’t have truth values. This is one of the main differences between indicatives and
imperatives.

Imperatives have propositional contents, which can be expressed by indicatives. It
is difficult to give a specific order (or request, etc.) without any propositional content3.
The following indicatives can respectively express the propositional contents of the
imperatives in (1):

(2) a. You will pull over your car.

b. You will not go to the party.

c. You will help me with my bicycle.

d. You will have fun.

e. You will go to hell.

We think that each imperative contains two factors: imperative force and propositional
content. They play different roles for imperatives: The first factor indicates that some-
thing is commanded (or requested, etc.), and the second factor indicates what is com-
manded (or requested, etc.). Similar arguments can be found in Han [3] and Jorgensen
[5]. In this paper, we use I(φ) to represent an imperative, where φ expresses a propo-
sition.

In natural language, any boolean combination of indicatives is still an indicative.
In other words, the set of indicatives is closed under the boolean connectives. But for
imperatives, this is not the case. Actually the set of imperatives is not closed under any
connective except conjunction.

(3) a. # Not close the door!

b. # Do close the door! or do close the window!

c. # If close the door! then close the window!

d. Close the door! and close the window!

Imperatives can not be negated. At least in English, any sentence of the form ¬I(φ)
is infelicitous, as shown by (3a). Furthermore, neither disjunction nor implication can
take two imperatives as its arguments. However, conjunctions of imperatives, such as
(3d), are often meaningful. In this paper we view a conjunction of imperatives as a
sequence of imperatives.

However, not all boolean combinations containing imperatives are infelicitous:
Some of them in mixed moods may be meaningful. Here are some examples:

(4) a. Leave your phone number and I will call you tomorrow.

b. Show your pass or I will not let you in.

c. If you see John some day, tell him this news.

Since we only focus on imperatives in this paper, we put aside these cases and leave
developing a semantics for them to another occasion.

3Actually in some special cases, people do this. For example, a mother may make such a convention with
her son: A cough from her represents the order: Go to bed now! But we simply ignore these cases in this
paper.
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1.2 Problems
This paper aims to solve two problems: consistency of imperatives and Ross’s paradox.
We focus on consistency problem firstly. Look at the following three sequences of
imperatives:

(5) a. Close the door or the window!

b. Don’t close the door!

(6) a. Close the door or the window!

b. Don’t close them both!

(7) a. Close the door or the window!

b. Close the door!

Suppose that in any sequence, the imperatives are uttered by different speakers. If
we only consider the propositional contents of these imperatives, all of these sequences
are classically consistent, simply because they each have a classical model. But intu-
itively it seems that any of them more or less contains some conflict. How should we
account for the intuitions about this?

We move to the second problem. The following inference is called Ross’s paradox,
which was mentioned in Ross [8]:

(8) Slip the letter into the letter-box! |= Slip the letter into the letter-box or burn it!

This inference is valid in classic logic, but weird in our intuitions. We think that a
successful semantics for imperatives should avoid this inference to be valid. In what
follows we will present a semantics for imperatives, in which these problems have
straightforward solutions.

In the literature there are two main directions in which the semantics for impera-
tives was developed. The work in the first direction considers imperatives having truth
values, and uses STIT logic to deal with them. The related work includes Horty [4],
Segerberg [11], Aloni [1], Schwager [10], etc.. The second direction was inspired by
linguistic semantics, and the related work includes Portner [7], Mastop [6], Veltman
[13], etc..

Our work is along the second direction. We present the semantics in the framework
of update semantics, which was proposed byVeltman [12]. In this semantics, meaning
of imperatives is an update function on force structures, which essentially share the
similar idea with plans defined in Veltman [13].

After briefly stating the basic theory of update semantics in section 2, we introduce
force structures, for which we also define paths, routes and tracks. We analyze the
consistency problem in detail in section 3. The semantics is depicted in section 4.
In section 5, we define the validity of inferences for imperatives. Section 6 is the
conclusion of this paper. We put the proofs of some propositions occurring in this
paper to the appendix section.

2 Force structures
Firstly we state the basic idea of update framework. An update system is a triple
〈L ,Σ, d·e〉, where L is the language for which we define the semantics, Σ is the set
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of information states, and d·e is a function from L to Σ → Σ, which assigns to each
sentence φ an operation dφe, which is from information states to information states.
For any φ, dφe is called an update function. The elements of Σ can be viewed as
contexts. In this sense, meaning of language lies in how it updates the contexts. In the
update framework, the validity is defined based on the acceptance relation `, which is
between information states and sentences. For any information state σ and any sentence
φ, σ ` φ if the information conveyed by φ is already subsumed by σ.

We turn to imperatives. As we mentioned previously, any imperative contains two
factors: propositional content and imperative force. Intuitively, uttering an imperative
gives some imperative force to the agent, which tends to push him to make true the
propositional content of this imperative in the future. This suggests that we can deal
with imperatives in the update framework in this way: Identify information states with
states of imperative forces born by the agent; The meaning of imperatives lies in how
they change the force states; A force state accepts an imperative if the force brought
about by this imperative is already contained in this force state. This is the basic idea
of the semantics presented in this paper. Now we start to formalize this idea.

2.1 Force structures
Let Y be the standard language for the classical propositional logic, which is defined
as follows.

Definition 1. (Language Y )

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ

Let L = {I(φ) | φ ∈ Y } be the set of all imperatives. L is the language for which
we will give a semantics.

Let A be the set of literals of Y . We call a literal l as a force. Let B = {X ⊆
A | X is finite}. Each J ∈ B is called a choice scope. Note that the empty set ∅ is also
a choice scope. Let F = {X ⊆ B | X is finite}. Each K ∈ F is a force structure. The
empty set ∅ is called the minimal force structure. Those force structures containing ∅
are called as absurd ones.

Each force structure describes a state of imperative forces exerted to the agent.
We explain the reading of force structures by an example. Look at the force structure
K1 = {{p4,¬p2}, {p3}, {p2, p1}}, as illustrated in the following picture4:

p4

¬p2

p3

p2

p1

In this picture, there are three small blocks in a big block. Each small block is a choice
scope. For each choice scope, the agent has to choose at least one literal in it and make
this literal true. The agent has no choices for single choice scopes, and must make true
the only literal in them. For non-single choice scopes, he has free choices. Note this
freedom is relative. For example, if the agent chooses ¬p2 in the first choice scope,
then he must choose p1 in the last one, since in this case he can not make true p2 any

4Note that we didn’t put any order between the choice scopes for any force structure.
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more. It should be noted that not all literals in A occur in this force structure, which
only includes those literals having imperative forces to the agent.

For any choice scope, making true more than one literal in it is allowed absolutely.
For any choice scope, if one literal of it is made true by the agent, we say that this
choice scope is performed. If all choice scopes in a force structure are performed, we
say that this force structure is performed.

2.2 Paths, routes and tracks
Let K = {X1, . . . , Xn} be any force structure. Define the set C as follows: C =
{{l1, . . . , ln} | 〈l1, . . . , ln〉 ∈ X1× . . .×Xn}. Each P ∈ C is called a path of K. P is
consistent if and only there is no propositional variable p such that, both p and ¬p are
in P . Each path is a way to perform K. The following picture shows the paths of K1,
as mentioned above.
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Every road from the leftmost point to the rightmost point is a path of K1
5. We can see

that p3 appears in every road, which means that the agent must make it true.
For any Xi ∈ K, the addressee may choose more than one literal in it. Thus the

union of some paths is also a way of performing K. Generally we define the set of all
ways of performing K. Let D = {

⋃
Z | Z ⊆ C}. Each R ∈ D is called a route of K.

We can see that each path is a route. R is consistent if and only if it does not contain
any contradiction.

Now we define tracks for K, whose definition is a bit complicated. For any Xi,
let X ′

i be the smallest set such that both p and ¬p are in X ′
i for any p occurring in Xi.

T = X ′′
1 ∪ . . . ∪X ′′

n is a track for K if and only if: (1) X ′′
i ⊆ X ′

i and X ′′
i ∩Xi 6= ∅;

(2) For any p occurring in Xi, one and only one of p and ¬p is in X ′′
i . T is consistent

if and only if it does not contain any contradiction.
The idea for tracks is simple. Each track T completely describes a way to perform

K: For any Xi ∈ K, T specifies clearly which literals the agent chooses, and which
ones he does not. The set of tracks for K describes all complete ways of performing
K. The following picture shows the set of tracks for K1.
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5Note that there is no order.
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Every road from the leftmost point to the rightmost one is a track for K1.
Routes are different from tracks in two aspects: (1) Routes may not specify which

literals the agent does not choose; (2) Routes may not specify which ones he chooses.
The first aspect does not need more words. Here is an example for the second aspect:
K2 = {{p1,¬p1, p2}}. We can see that {p2} is a route for K2. The agent has to make
a choice from p1 and ¬p1

6, but the route {p2} does not specify which one. Since the
variable p1 does not appear in {p2}, it is not a track. Each track uniquely determines a
route, but not vice versa.

For a force structure K, any path is a way to perform this force structure. The
agent can freely choose any path to perform K. In this sense we can say that paths
of K are free choices to perform K. Each route of K is also a way to perform K.
The difference of routes from paths is that paths are “simplest” routes. To perform K,
the agent also can freely choose the route he prefers. Tracks of K are different from
paths and routes in that they completely describe the ways to perform K. Therefore,
we can say that paths, routes and tracks are three different types of free choices to
perform force structures. The difference among them is crucial. Later we will see that
they produce different definitions of consistency, and consequently produce different
notions of entailment.

2.3 Correspondence between imperatives and force structures
Let I(φ) be any imperative. The indicative φ consists of some propositional variables
and connectives. The set of these variables generates a set of literals. Each literal can
be viewed as an atomic event. In order to perform I(φ), what the agent needs to do is
to make true some literals in this set. There may be some literals which the addressee
must make true absolutely, and there may also be some literals which he may not make
true conditionally. In what follows we define two functions T+ and T−, under which
every imperative I(φ) corresponds to a force structure, which exactly represents the
situation that the agent faces in order to perform I(φ).

F is the set of force structures. Let K ∈ F be an arbitrary force structure. T+ and
T− are two functions from F × Y to F, which are defined by parallel recursion in the
following way:

(a) T+(K, p) =
{
{{p}}
{X∪{p} | X∈K}

if K = ∅
otherwise

T−(K, p) =
{
{{¬p}}
{X∪{¬p} | X∈K}

if K = ∅
otherwise

(b) T+(K,¬φ) = T−(K,φ)

T−(K,¬φ) = T+(K,φ)

(c) T+(K,φ ∧ ψ) = T+(K,φ) ∪ T+(K,ψ)

T−(K,φ ∧ ψ) = T−(T−(K,φ), ψ)

(d) T+(K,φ ∨ ψ) = T+(T+(K,φ), ψ)

T−(K,φ ∨ ψ) = T−(K,φ) ∪ T−(K,ψ)

6 For any literal, the agent has to make a choice about whether he will make true it. There is no third
option. Even if he decides to do nothing, he still makes his choice for this literal.
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For any imperative I(φ), T+(∅, φ) is its corresponding force structure.
To show why imperatives should correspond to force structures in this way, we give

some examples:

(9) a. Don’t open the door! [I(¬p5)]

b. Open the door and the window! [I(p5 ∧ p6)]

c. Open the door or the window! [I(p5 ∨ p6)]

d. Don’t open the door and the window! [I(¬(p5 ∧ p6))]

e. Don’t open the door or the window! [I(¬(p5 ∨ p6))]

f. Open switch 1 and 2 or open switch 3 and 4! [I((p1 ∧ p2) ∨ (p3 ∧ p4))]

The following force structures correspond to these imperatives respectively:

¬p5

I(¬p5)

p5 p6

I(p5 ∧ p6)

p5

p6

I(p5 ∨ p6)

¬p5

¬p6

I(¬(p5 ∧ p6))

¬p5 ¬p6

I(¬(p5 ∨ p6))

p1

p3

p1

p4

p2

p3

p2

p4

I((p1 ∧ p2) ∨ (p3 ∧ p4))

The imperative (9f) is a bit complicated. To comply with it, the agent has to either open
switch 1 and 2 or open switch 3 and 4. The following picture shows all paths of the
force structure of (9f):
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We can see that for each path, either both p1 and p2 appear on it or both p3 and p4

appear on it.
For any set Γ = {I(φ1), . . . , I(φn)}, we say that T+(∅, φ1) ∪ . . . ∪ T+(∅, φn) is

the force structure corresponding to it. Particularly, the empty set corresponds to itself.
We also call the force structure of the set {I(φ1), . . . , I(φn)} as the force structure of
any sequence generated from this set.

Every imperative uniquely corresponds to a force structure under the function T+.
Such a correspondence is the basis for all of our following work in this paper: Consis-
tency, semantics and logic for imperatives will be given based on this correspondence.
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In the introduction section, we said that force structures and plans defined by Velt-
man [13] share the similar idea. Here we briefly restate his theory. Let A be the set
of literals of Y . Each literal can be viewed as an atomic event. Let B = {X ⊆
A | X is finite}. Each J ∈ B is called a to-do list. A to-do list J is consistent if and
only if there is no variable p ∈ Y such that both p and ¬p are in J . A finite set of
consistent to-do lists is called a plan.

Essentially there is no difference between the definitions of force structures and
plans, except that plans only consists of consistent sets of literals. However, plans have
a completely different reading from force structures. We show it by an example. Look
at the following picture, which represents the plan Π1 = {{p4, p3, p2}, {p4, p3, p1},
{¬p2, p3, p1}}:

¬p2 p3 p1

p4 p3 p1

p4 p3 p2

In this plan, each block is a to-do list. The agent has to choose at least one to-do list
in order to complete this plan, but he can freely choose any one of them. For the to-do
list chosen, he has to make true all literals in it. The literal p3 occurs in every to-do
list, which means the agent must make it true. All literals except p3 do not occur in
all to-do lists, which means that he gets explicit permission to make them true, but he
may not to do that. Clearly not all literals in A occur in this plan, and it only includes
those on which the agent has got explicit constraints. All literals not in this plan are the
events not mentioned by the speaker.

In Veltman’s theory, meaning of imperatives lies in changing plans in some way.
We will come back to this theory later, and contrast it with ours.

3 Consistency

Let 〈I(φ1), . . . , I(φn)〉 be any sequence of imperatives. Suppose that these imperatives
are uttered one by one by some speakers to the agent. In this section we focus on the
question: Are these utterances consistent?

Let 〈ψ1, . . . , ψm〉 be any sequence of indicatives. In the classical semantics of in-
dicatives, 〈ψ1, . . . , ψm〉 is consistent if and only if the set {ψ1, . . . , ψm} has a clas-
sical model. This definition implies that 〈ψ1, . . . , ψm〉 is consistent if and only if
ψ1∧ . . .∧ψm is consistent, which means that consistency of sequences can be reduced
to consistency of single indicatives. However, whether we should define consistency
for imperatives in a similar way is not easy to answer, even if we only consider their
propositional contents.

3.1 Single imperatives
Firstly we think that this definition is also applicable to single imperatives. Let I(φ) be
any imperative. The consistency of I(φ) is defined as follows.
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Definition 2. (Consistency of imperatives) The imperative I(φ) is consistent if and
only if φ has a classical model.

We see that I(φ) is consistent if and only if its force structure contains a consistent
path. As the proposition content of I(φ), φ describes a fact about the world, which
may have not been realized yet but is wished to be true by the speaker. When the agent
makes φ true in the future, this imperative is performed. There is no constraints on
what is the world described by φ like, unless it is an impossible world.

There are some imperatives, which satisfy this condition but seem weird. The
imperative (10) is such an example. However, we think that this sort of weirdness
comes from the perspective of pragmatics, just like (11) is weird, but still classically
consistent.

(10) Kick the red ball or the blue ball and don’t kick the red ball!

(11) It is raining or snowing and it is not raining.

In order to keep coincident with this argument, we define the consistency of force
structures as follows, where we count the empty set as a consistent force structure:

Definition 3. (Consistency of force structures) The force structure K is consistent if
and only if K = ∅ or it has a consistent path.

In this way I(φ) is consistent if and only if its force structure is consistent. The follow-
ing definition is too strong: The force structure K is consistent if and only if any path
of it is consistent. According to it, many ordinary imperatives in natural language are
not consistent. The imperative (12) is such an example.

(12) Close the door or the window but don’t close them both!

Therefore we consider this definition unreasonable.

3.2 Restrictions between imperatives
The situation gets more complicated when we generally consider sequences of impera-
tives. Here the problem is: Should we require that the sequence 〈I(φ1), . . . , I(φn)〉 is
consistent if and only if the imperative I(φ1∧. . .∧φn) is consistent? In deed, this prob-
lem involves where we should draw the borderline between semantics and pragmatics
for imperatives.

We generally talk about the restrictions between utterances. We focus on uttering
indicatives firstly. We say that two utterances are restricted by each other if (1) There
is a classical model in which both of them are true; (2) They both satisfy the maxim
of quantity in the sense of Grice [2]; (3) From the two utterances we can get that the
two speakers of them are in different information states. Here is an example. Suppose
(13a) and (13b) are uttered by the speakers A and B respectively:

(13) a. It is raining or snowing.

b. It is not raining.

Suppose both of the utterances satisfy the maxim of quantity. From (13a) we get that,
the speaker A does not know whether it is raining, and does not know whether it is
snowing either, although he knows that at least one of them is true. However, the
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speaker B of (13b) knows whether it is raining. We see that the two speakers have
different information states about the world, and there is some conflict between the
two utterances. But (13a) and (13b) may be true at the same time. In this sense we say
that they are restricted by each other.

There is also a similar problem with imperatives. We consider utterance of imper-
atives. We say that two utterances are restricted by each other if (1) The propositional
contents of the two imperatives may be true in a model; (2) By each imperative, what
the speaker exactly wishes is that the propositional content of it would be true; (3)
From the two utterances, we can get that the two speakers of them have different mind
states. We give an example. Suppose (14a) and (14b) are uttered by the speakers A and
B respectively:

(14) a. Close the door or the window!

b. Don’t close the door!

From (14a), we know what the speaker A really wishes is that the door or window
would be closed by the addressee, and he does not care which one. Therefore closing
the door is fine with the speaker A. But closing the door is not fine with the speaker B
according to (14b). This implies that the speakers A and B have different mind states.

The classical definition of consistency for indicatives does not consider this sort
of restrictions, and just delegate them to pragmatics. However intuitively counting
sequences like (14) as consistent ones is more strange than counting sequences like
(13) as consistent. It makes more sense to put these restrictions between utterances
of imperatives into semantics. According to where we draw the borderline between
semantics and pragmatics, there are two different directions in which we define con-
sistency for imperatives: (1) The restrictions between utterances are allowed, and
〈I(φ1), . . . , I(φn)〉 is consistent if and only if I(φ1∧. . .∧φn) is consistent; (2) Consis-
tent utterances don’t contain any restrictions. In the coming, we will define consistency
along each of the two directions. In particular, we will give some alternative choices in
the second direction.

3.3 Sequences of imperatives
In the first direction, the definition of consistency of sequences is straightforward, be-
cause we have defined consistent imperatives.

Definition 4. (Consistency1 of sequences) The sequence 〈I(φ1), . . . , I(φn)〉 is con-
sistent if and only if the force structure of {I(φ1), . . . , I(φn)} has a consistent path.

According to this definition, only sequences like (15), which there is no way to perform,
are inconsistent. Sequences containing restrictions like (14) are consistent.

(15) a. Drink milk!

b. Don’t drink milk!

We turn to the second direction, in which the consistency is sensitive to the re-
strictions between utterances. In what follows, we use compatibility between force
structures to capture the restrictions between imperatives, in the sense that two consis-
tent imperatives are restricted by each other if and only if their force structures are not
compatible. Actually we don’t have clear intuitions about consistency of imperatives.
Considering this point, we give three alternative choices of compatibility, among which
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the extent of allowed restrictions are different. Later we will see that these different no-
tions of compatibility will produce different notions of consistency. Let K1 and K2 be
any force structures.

Definition 5. (Compatibility2 of force structures) The force structures K1 and K2 are
compatible2 if and only if (1) For any consistent path P1 of K1, there is a consistent
path P of K1 ∪K2 such that P1 ⊆ P ; (2) For any consistent path P2 of K2, there is a
consistent path P of K1 ∪K2 such that P2 ⊆ P .

Definition 6. (Compatibility3 of force structures) The force structures K1 and K2 are
compatible3 if and only if (1) For any consistent route R1 of K1, there is a consistent
route R of K1 ∪K2 such that R1 ⊆ R; (2) For any consistent route R2 of K2, there is
a consistent route R of K1 ∪K2 such that R2 ⊆ R.

Definition 7. (Compatibility4 of force structures) The force structures K1 and K2 are
compatible4 if and only if (1) For any consistent track T1 of K1, there is a consistent
track T of K1 ∪K2 such that T1 ⊆ T ; (2) For any consistent track T2 of K2, there is a
consistent track T of K1 ∪K2 such that T2 ⊆ T .

The three definitions share the same idea: Two force structures are compatible if
and only if no consistent path (route or track) of them will be lost after putting the
two force structures together. Paths, routes and tracks are three types of free choices
of force structures. Hence what the three definitions say is that there is no conflicts
among the free choices of two compatible force structures. By doing so, we catch the
restrictions between imperatives. In what follows we also say that two imperatives are
compatible if their force structures are compatible.

As we have mentioned, every consistent path is a consistent route, and any con-
sistent route can be extended to a consistent track. Therefore we have the following
results about the strength of the three compatibilities: compatibility2 ≤ compatibility3

≤ compatibility4. Actually this order is strict, which we show by some examples:

p1

K1

p1

p2

K2

¬p1

¬p2

K3

It is easy to verify that K1 and K2 are compatible3 but not compatible4. Hence, we
have that compatibility3 < compatibility4. We also get thatK2 andK3 are compatible2

but not compatible3. Therefore compatibility2 < compatibility3.
We point out some special facts implied by these notions of compatibility. The

first one is: Any two inconsistent force structures are compatible under any of these
definitions, simply because neither of them contains any consistent paths, routes or
tracks. Hence the conditions of compatibility are trivially satisfied. The second fact is:
As a consistent force structure, the empty set ∅ is compatible with any force structure
relative to any of these notions of compatibility. The third one is: The absurd force
structure {∅} is only compatible with inconsistent force structures and ∅, sinceK∪{∅}
does not contain any consistent paths, routes or tracks for any K.

We define the consistency of the sequence 〈I(φ1), . . . , I(φn)〉 by following such
an intuition: A sequence of utterances is consistent if and only if each utterance in it is
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compatible with all previous utterances as a whole. The three notions of compatibility
generate three notions of consistency:

Definition 8. (Consistency2 of sequences of imperatives) The sequence 〈I(φ1), . . . ,
I(φn)〉 is consistent2 if and only if (1) The force structure of the set {I(φ1), . . . ,
I(φn)} has a consistent path; (2) The force structure of φi is compatible2 with the
force structure of the set {I(φ1), . . . , I(φi−1)} for any i.

Definition 9. (Consistency3 of sequences of imperatives) The sequence 〈I(φ1), . . . ,
I(φn)〉 is consistent3 if and only if (1) The force structure of the set {I(φ1), . . . ,
I(φn)} has a consistent path; (2) The force structure of φi is compatible3 with the
force structure of the set {I(φ1), . . . , I(φi−1)} for any i.

Definition 10. (Consistency4 of sequences of imperatives) The sequence 〈I(φ1), . . . ,
I(φn)〉 is consistent4 if and only if (1) The force structure of the set {I(φ1), . . . ,
I(φn)} has a consistent path; (2) The force structure of φi is compatible4 with the
force structure of the set {I(φ1), . . . , I(φi−1)} for any i.

Given the fact that compatibility2 < compatibility3 < compatibility4, we have that
consistency2 < consistency3 < consistency4. Furthermore, it is easy to prove that
consistency2 is strictly stronger than consistency1. Here are some typical examples, by
which the four consistencies can be distinguished from each other:

(16) a. Don’t open the door! Open the door or the window!

b. Open the door or the window! Don’t open them both!

c. Open the door! Open the door or the window!

d. Open the door or turn on the TV! Open the door or the window!

By verifying these examples, we have the following results: (1) The sequence (16a)
is only consistent1; (2) (16b) is consistent1 and consistent2; (3) (16c) is consistent1,
consistent2 and consistent3; (4) (16d) is consistent under all these definitions. In addi-
tion, the antecedent and consequent of Ross’s paradox is not consistent4, but consistent3
and consistent2.

Previously we have independently defined the consistency of single imperatives.
Here we generally define the consistency of sequences, which may contain only one
imperative. Actually there is no conflict. Let I(φ) be any imperative. We can show that
for any i ≤ 4, the single sequence 〈I(φ)〉 is consistenti if and only if the force structure
of I(φ) has a consistent path, which means that all these consistencies collapse to one
when restricted to single imperatives.

In order to define the entailment for update1 in section 5, we need to define the
consistency1 in terms of compatibility.

Definition 11. (Compatibility1 of force structures) The force structuresK1 andK2 are
compatible1 if and only if (1) IfK1 has a consistent path, thenK1∪K2 has a consistent
path; (2) If K2 has a consistent path, then K1 ∪K2 has a consistent path.

Definition 12. (Consistency1′ of sequences of imperatives) The sequence 〈I(φ1), . . . ,
I(φn)〉 is consistent1′ if and only if (1) The force structure of the set {I(φ1), . . . , I(φn)}
has a consistent path; (2) The force structure of φi is compatible1 with the force struc-
ture of the set {I(φ1), . . . , I(φi−1)} for any i.
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It is easy to see that consistency1′ is equivalent to consistency1, and compatibility1

is weaker than compatibility2. Note that according to this compatibility, inconsistent
force structures are only compatible with inconsistent force structures and ∅, and ∅ is
compatible with any force structure.

In this section, we defined the notion of consistency of sequences of imperatives
along two different directions. In the first direction we did not consider the restrictions
between imperatives, and gave one definition. In the second direction, we defined three
alternative notions of compatibility to characterize the restrictions, based on which
three notions of consistency are defined. In the next section we will present semantics
for imperatives based on these discussions.

4 Semantics
We propose that meaning of imperatives is an update function on force structures:
Uttering imperatives will change force structures in some way. Let K be any force
structure. Let d·e1, d·e2, d·e3 and d·e4 denote four update functions, which are defined
as follows.

Definition 13. (Update1 of force structures)

KdI(φ)e1 =
{
K ∪ T+(∅, φ) K and T+(∅, φ) are consistent and compatible1

{∅} otherwise

Definition 14. (Update2 of force structures)

KdI(φ)e2 =
{
K ∪ T+(∅, φ) K and T+(∅, φ) are consistent and compatible2

{∅} otherwise

Definition 15. (Update3 of force structures)

KdI(φ)e3 =
{
K ∪ T+(∅, φ) K and T+(∅, φ) are consistent and compatible3

{∅} otherwise

Definition 16. (Update4 of force structures)

KdI(φ)e4 =
{
K ∪ T+(∅, φ) K and T+(∅, φ) are consistent and compatible4

{∅} otherwise

Recall that each force structure describes a state of imperative forces born by the
agent, and for any I(φ), T+(∅, φ) is the corresponding force structure. When K and
T+(∅, φ) are not absurd, updating K with I(φ) will put together K and T+(∅, φ),
unless they are not compatible. IfK or T+(∅, φ) are absurd, or they are not compatible,
the update result is {∅}, the absurd force structure.

The only difference among the four updates is that they require different conditions
for two consistent force structures to be compatible, which can be expressed by the
following inference: KdI(φ)e1 = {∅} ⇒ KdI(φ)e2 = {∅} ⇒ KdI(φ)e3 = {∅} ⇒
KdI(φ)e4 = {∅}.

In order to make clear how these semantics are running, and where they are dif-
ferent, we check the meaning of sequences in (16). We use the following formulas to
represent these sequences:

(16′) a. I(¬p1); I(p1 ∨ p2)
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b. I(p1 ∨ p2); I(¬(p1 ∧ p2))

c. I(p1); I(p1 ∨ p2)

d. I(p1 ∨ p3); I(p1 ∨ p2)

Updating ∅ with these sequences will produce the following results:

a. (1) ∅dI(¬p1)e1dI(p1 ∨ p2)e1 = {{¬p1}}dI(p1 ∨ p2)e1 = {{¬p1}, {p1, p2}}
(2) ∅dI(¬p1)e2dI(p1 ∨ p2)e2 = {{¬p1}}dI(p1 ∨ p2)e2 = {∅}
(3) ∅dI(¬p1)e3dI(p1 ∨ p2)e3 = {{¬p1}}dI(p1 ∨ p2)e3 = {∅}
(4) ∅dI(¬p1)e4dI(p1 ∨ p2)e4 = {{¬p1}}dI(p1 ∨ p2)e4 = {∅}

b. (1) ∅dI(p1 ∨ p2)e1dI(¬(p1 ∧ p2))e1 = {{p1, p2}}dI(¬(p1 ∧ p2))e1 =
{{p1, p2}, {¬p1,¬p2}}

(2) ∅dI(p1 ∨ p2)e2dI(¬(p1 ∧ p2))e2 = {{p1, p2}}dI(¬(p1 ∧ p2))e2 =
{{p1, p2}, {¬p1,¬p2}}

(3) ∅dI(p1 ∨ p2)e3dI(¬(p1 ∧ p2))e3 = {{p1, p2}}dI(¬(p1 ∧ p2))e3 = {∅}
(4) ∅dI(p1 ∨ p2)e4dI(¬(p1 ∧ p2))e4 = {{p1, p2}}dI(¬(p1 ∧ p2))e4 = {∅}

c. (1) ∅dI(p1)e1dI(p1 ∨ p2)e1 = {{p1}}dI(p1 ∨ p2)e1 = {{p1}, {p1, p2}}
(2) ∅dI(p1)e2dI(p1 ∨ p2)e2 = {{p1}}dI(p1 ∨ p2)e2 = {{p1}, {p1, p2}}
(3) ∅dI(p1)e3dI(p1 ∨ p2)e3 = {{p1}}dI(p1 ∨ p2)e3 = {{p1}, {p1, p2}}
(4) ∅dI(p1)e4dI(p1 ∨ p2)e4 = {{p1}}dI(p1 ∨ p2)e4 = {∅}

d. (1) ∅dI(p1 ∨ p3)e1dI(p1 ∨ p2)e1 = {{p1, p3}}dI(p1 ∨ p2)e1 =
{{p1, p3}, {p1, p2}}

(2) ∅dI(p1 ∨ p3)e2dI(p1 ∨ p2)e2 = {{p1, p3}}dI(p1 ∨ p2)e2 =
{{p1, p3}, {p1, p2}}

(3) ∅dI(p1 ∨ p3)e3dI(p1 ∨ p2)e3 = {{p1, p3}}dI(p1 ∨ p2)e3 =
{{p1, p3}, {p1, p2}}

(4) ∅dI(p1,∨p3)e4dI(p1 ∨ p2)e4 = {{p1, p3}}dI(p1 ∨ p2)e4 =
{{p1, p3}, {p1, p2}}

It should be pointed out that all these semantics except the first one don’t have the
property of commutativity. That is to say, for any i (i = 2, 3, 4), there are someK, I(φ)
and I(ψ) such that KdI(φ)eidI(ψ)ei 6= KdI(ψ)eidI(φ)ei. This implies that update2,
update3 and update4 are genuinely dynamic, while update1 essentially is static. Next
we give some examples to show that the commutativity does not hold for update2,
update3 and update4.

Let K1 = {{p1, p2}}, I(φ1) = I(¬p1 ∨ ¬p2) and I(ψ1) = I(p1 ∨ p2 ∨ p3). It
can be verified that K1dI(φ1)e2dI(ψ1)e2 6= {∅} while K1dI(ψ1)e2dI(φ1)e2 = {∅},
which means that K1dI(φ1)e2dI(ψ1)e2 6= K1dI(ψ1)e2dI(φ1)e2.

Let K2 = {{p1, p2}}, I(φ2) = I(¬p1 ∨ ¬p4) and I(ψ2) = I(p3 ∨ p4). We can
verify that K2dI(φ2)e3dI(ψ2)e3 6= {∅} while K2dI(ψ2)e3dI(φ2)e3 = {∅}. It can
also be verified that K2dI(φ2)e4dI(ψ2)e4 6= {∅} while K2dI(ψ2)e4dI(φ2)e4 = {∅}.

For any sequence 〈I(φ1), . . . , I(φn)〉 and any i ≤ 4, we have the following result:
〈I(φ1), . . . , I(φn)〉 is consistenti if and only if ∅dI(φ1)ei . . . dI(φn)ei 6= {∅}. This
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means that updating the minimal force structure ∅with an inconsistent sequence results
in an absurd force structure, which we think is reasonable.

The update function [·] defined in Veltman [13] is equivalent to d·e2 defined here
in the following sense: For any plan Π and force structure K, if Π is the set of all
consistent paths of K, then for any I(φ), Π[φ] is the set of all consistent paths of
KdI(φ)e2.

5 Entailment

Let 〈I(φ1), . . . , I(φn)〉 be any sequence, and I(ψ) be any imperative. In this section
we define 〈I(φ1), . . . , I(φn)〉 |= I(ψ).

For any force structuresK1 andK2, we useK1 ≈2 K2,K1 ≈3 K2 andK1 ≈4 K2

to respectively express that K1 and K2 have the same sets of consistent paths, routes
and tracks. Relative to each semantics except the first one presented in the last section,
we define an acceptance relation `. The acceptance relation for the first semantics will
be given later. Let K be any force structure, and I(φ) be any imperative.

Definition 17. (Acceptance2) K `2 I(φ) ⇔K ≈2 KdI(φ)e2.

Definition 18. (Acceptance3) K `3 I(φ) ⇔K ≈3 KdI(φ)e3.

Definition 19. (Acceptance4) K `4 I(φ) ⇔K ≈4 KdI(φ)e4.

That a force structure accepts an imperative means that updating this force structure
with this imperative does not change the set of its consistent paths (routes or tracks). In
particular, inconsistent force structures accept any imperatives, and the minimal force
structure ∅ only accepts inconsistent imperatives.

The difference among the three acceptance relations is a bit complicated. Simply
speaking, it is not the case that for any K and I(φ), K `2 I(φ) ⇒ K `3 I(φ) ⇒
K `4 I(φ) or K `4 I(φ) ⇒ K `3 I(φ) ⇒ K `2 I(φ). But in some special cases,
the strength of these acceptance relations is comparable. We look at the following
proposition, whose proof is put to the appendix section.

Proposition 5.1. K1 ≈2 K2 ⇒ K1 ≈3 K2 ⇒ K1 ≈4 K2.

Note it is not necessary true that K1 ≈4 K2 ⇒ K1 ≈3 K2. We give a counter-
example for this point. Let K1 = {{p1}, {p1, p2}}, and K2 = {{p1}, {p1,¬p2}}.
It can be verified that K1 and K2 have the same set of consistent tracks but different
sets of consistent routes. It is also not true that K1 ≈3 K2 ⇒ K1 ≈2 K2. Here is a
counter-example: K1 = {{p1}, {p1, p2}, {p2, p3}}, and K2 = {{p1}, {p2, p3}}. By
this proposition, we can see that if for any 2 ≤ i ≤ 4, K and ∅dI(φ)ei are compatiblei,
then K `2 I(φ) ⇒ K `3 I(φ) ⇒ K `4 I(φ). This relation is strict, because based
on the above examples, we can construct counter-examples for K `4 I(φ) ⇒ K `3

I(φ) ⇒ K `2 I(φ). For the first case, we let K = {{p1}, {p1, p2}} and I(φ) =
I(p1 ∧ (p1 ∨ ¬p2)). We have K `4 I(φ), but do not have K `3 I(φ). For the second
case, we can let K = {{p1}, {p2, p3}} and I(φ) = I(p1 ∧ (p2 ∨ p3) ∧ (p1 ∨ p2)). We
also can see that if K is inconsistent, K `2 I(φ) ⇔ K `3 I(φ) ⇔ K `4 I(φ), simply
because for any acceptance relation, an inconsistent force structure accepts everything.

By using acceptance relation, we can define the notion of validity for imperatives.
In what follows, we give three definitions of entailment, which are respectively relative
to update2, update3 and update4.
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Definition 20. (Entailment2)
〈I(φ1), . . . , I(φn)〉 |=2 I(ψ) ⇔ ∅dI(φ1)e2 . . . dI(φn)e2 `2 I(ψ).

Definition 21. (Entailment3)
〈I(φ1), . . . , I(φn)〉 |=3 I(ψ) ⇔ ∅dI(φ1)e3 . . . dI(φn)e3 `3 I(ψ).

Definition 22. (Entailment4)
〈I(φ1), . . . , I(φn)〉 |=4 I(ψ) ⇔ ∅dI(φ1)e4 . . . dI(φn)e4 `4 I(ψ).

About the relation between the three notions of validity, it can be easily shown that
neither |=2 ≤ |=3 ≤ |=4 nor |=4 ≤ |=3 ≤ |=2 is the case. However, when the sequence
〈I(φ1), . . . , I(φn)〉 is consistenti and compatiblei with I(ψ) for any 2 ≤ i ≤ 4, we
have |=2 ≤ |=3 ≤ |=4. Of course, when 〈I(φ1), . . . , I(φn)〉 is inconsistenti for any i,
we have |=2 = |=3 = |=4, since inconsistent force structures accept any imperative.

We defined validity in the above by using the minimal force structure ∅. In fact these
notions of validity can not be equivalently defined by using arbitrary force structure
K, because the following result does not hold: For any 2 ≤ i ≤ 4, ∅dI(φ1)ei . . .
dI(φn)ei `i I(ψ) if and only if for any force structure K, KdI(φ1)ei . . . dI(φn)ei `i

I(ψ). Here we give an universal counter-example for all these three cases: K =
{{¬p,¬r}}, I(φ1) = I(p ∨ q), I(φ2) = I(r ∨ s), and I(ψ) = I((p ∨ q) ∧ (r ∨
s)). It can be verified that for any 2 ≤ i ≤ 4, ∅dI(φ1)eidI(φ2)ei `i I(ψ), but
KdI(φ1)eidI(φ2)ei 0i I(ψ), simply because KdI(φ1)eidI(φ2)eidiI(ψ)ei = {∅},
while KdI(φ1)eidI(φ2)ei 6= {∅}.

Similar to the classical entailment in the update framework, all the notions of en-
tailment defined above are based on some invariance of “information states”. The main
difference is that, here it is the set of consistent paths (routes or tracks) of a force
structure that is invariant, not the force structure itself. The reason that we treat force
structures, not the sets of paths (routes or tracks), as information states is that we can
contrast the alternative semantics easily in this way.

Our way of defining entailment can be justified from another perspective. Let K1

andK2 be any force structures. Look at the relationsw2,w3 andw4, which are defined
as follows:

(a) K1 w2 K2 if and only if (1) For any consistent path P1 of K1, there is a consistent
path P2 of K2 such that P2 ⊆ P1; (2) For any consistent path P2 of K2, there is a
consistent path P1 of K1 such that P2 ⊆ P1.

(b) K1 w3 K2 if and only if (1) For any consistent routeR1 ofK1, there is a consistent
route R2 of K2 such that R2 ⊆ R1; (2) For any consistent route R2 of K2, there is
a consistent route R1 of K1 such that R2 ⊆ R1.

(c) K1 w4 K2 if and only if (1) For any consistent track T1 ofK1, there is a consistent
track T2 of K2 such that T2 ⊆ T1; (2) For any consistent track T2 of K2, there is a
consistent track T1 of K1 such that T2 ⊆ T1.

Roughly speaking, wi (i = 2, 3, 4) behaves like the subset relation. For instance,
supposeK1 w2 K2. In this case all the consistent paths ofK1 will survive inK1∪K2.
That is to say that any consistent path of K1 is also a consistent path of K1 ∪K2. All
the consistent paths ofK2 will also survive inK1∪K2, although in some indirect way:
Each of them appears in some consistent path ofK1∪K2. Similar situations happen to
w3 and w4. As mentioned previously, paths, routes and tracks can be treated as three
types of free choices to perform force structures. HereK1 wi K2 means three different
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things: (1) Every free choice of performingK2 is a part of performingK1; (2)K2 does
not block any free choice of K1 in the sense that there is no consistent path (route or
track) of K1, which is not a consistent path (route or track) of K1 ∪K2; (3) K2 does
not generate new free choices relative toK1 in the sense that there is no consistent path
(route or track) of K2, which does not occur in some consistent path (route or track) of
K1 ∪K2.

Let K be any consistent force structure. The following propositions hold, whose
proofs are put to the appendix:

Proposition 5.2. K `2 I(φ) ⇒K w2 ∅dI(φ)e2.

Proposition 5.3. K `3 I(φ) ⇔K w3 ∅dI(φ)e3.

Proposition 5.4. K `4 I(φ) ⇔K w4 ∅dI(φ)e4.

Based on these facts, we consider these acceptance relations reasonable. Consequently
the entailments have reasonable intuitions. Note that K w2 ∅dI(φ)e2 ⇒ K `2 I(φ)
may not hold. A counter-example is this: K = {{p1}, {p2, p3}} and I(φ) = I(p1 ∨
p2).

Next we give some examples to show how these notions of entailment work and
how they differ from each other.

(19) a. Invite Mary or invite Mary and Jack!

b. Invite Mary or invite Mary but not Jack!

(20) a. Invite Mary and invite Jack or John!
b. Invite Mary and invite Mary or Jack and invite Jack or John!

We see that for any i (i = 2, 3, 4), all the imperatives in (19) and (20) are consistenti.
We also see that for any i, (19a) and (19b) are compatiblei, and (20a) and (20b) are
compatiblei. We can verify that (19a) |=4 (19b). However, the literal “not inviting
Jack” does not occur in the force structure of (19a), hence (19a) 6|=3 (19b) and (19a)
6|=2 (19b). In this way “|=4” is distinguished from “|=3” and “|=2”. We can also verify
that (20a) |=3 (20b) but (20a) 6|=2 (20b), because putting together (20a) and (20b) will
produce the consistent path {inviting Mary, inviting Jack, inviting John}, which is not
even a path of (20a).

A typical example for entailment2 is (21):

(21) a. Open the door and the window!

b. Open the door or the window!

Actually (21a) |=2 (21b).
The fact that (19a) |=4 (19b) should be payed more attention. “Not inviting Jack” is

a literal occurring in the force structure of (19b), but not a literal occurring in the force
structure of (19a). However, this inference is still valid. This is a characteristic which
neither |=2 nor |=3 has.

We now turn to define validity for update1. Previously we defined compatibility1

by consistent paths in this way: For any K1 and K2, they are compatible if and only
if (1) If K1 has a consistent path, then K1 ∪ K2 has a consistent path; (2) If K2 has
a consistent path, then K1 ∪ K2 has a consistent path. In deed, replacing “path” by
“route” or “track” in this definition will not change this compatibility. Now we give
three alternative notions of entailment for update1, all of which are coincident with
compatibility1.
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Definition 23. (Acceptance12) K `12 I(φ) ⇔K ≈2 KdI(φ)e1.

Definition 24. (Acceptance13) K `13 I(φ) ⇔K ≈3 KdI(φ)e1.

Definition 25. (Acceptance14) K `14 I(φ) ⇔K ≈4 KdI(φ)e1.

Definition 26. (Entailment12)
〈I(φ1), . . . , I(φn)〉 |=12 I(ψ) ⇔ ∅dφ1e1 . . . dφne1 `12 I(ψ).

Definition 27. (Entailment13)
〈I(φ1), . . . , I(φn)〉 |=13 I(ψ) ⇔ ∅dφ1e1 . . . dφne1 `13 I(ψ).

Definition 28. (Entailment14)
〈I(φ1), . . . , I(φn)〉 |=14 I(ψ) ⇔ ∅dφ1e1 . . . dφne1 `14 I(ψ).

Since compatibility1 < compatibility2 < compatibility3 < compatibility4, we can see
that for any i (i = 2, 3, 4), `1i < `i, which means that the acceptance relation `1i is
weaker than the acceptance relation `i. However, we don’t have |=1i < |=i. The reason
for this lies in that ∅dφ1ei . . . dφnei is “easier” to be the absurd force structure {∅} than
∅dφ1e1 . . . dφne1, and {∅} entails anything. Essentially all the difference between |=1i

and |=i is caused by the difference between compatibility1 and compatibilityi.
We restate Ross’s paradox as (23):

(23) Slip the letter into the letter-box! |= Slip the letter into the letter-box or burn it!

It can be verified that this inference is invalid relative to any notion of validity we
have defined. The basic reason for this is that the consequent contains new free choice
relative to the antecedent. Furthermore, the antecedent and consequent are not even
compatible according to compatibility4.

Finally we focus on such a question: What is the relation between the logic for
imperatives, which are determined by the notions of entailment defined previously, and
classical propositional logic, if we only consider the propositional contents of impera-
tives.

Let I(φ) be any imperative, and K be its force structure. The force structure K
can be transformed to a conjunctive normal form (CNF) in the following way: (1) For
any choice scope of K, connect all literals in it by disjunction and we will get a simple
disjunction; (2) Connect all these simple disjunctions and we will get a CNF. It can be
proved that the resulting CNF is equivalent to φ in the classical logic. Actually for any
φ ∈ Y , the definition of T+ and T− describes a procedure to get one of its CNFs.

For any K, let Φ(K) be the corresponding CNF of K. Let “|=” be the classical
entailment. In fact we have such a proposition, whose proof is in the appendix section:

Proposition 5.5. For any i (i = 2, 3, 4), and for any K1 and K2, K1 ≈i K1 ∪K2 ⇒
Φ(K1) |= Φ(K2).

By this proposition we can prove that for any i, |=1i ⊆ |=. This means that the logics for
imperatives revealed by the three notions of entailment are subsets of classical logic.
But for the entailment notions defined for update2, update3 or update4, this is not the
case. Actually the following results hold: For any i, |=i 6⊆ |= and |= 6⊆ |=i. For instance,
Ross’s paradox is valid in classical logic, but invalid according to these notions of
entailment. On the other side, any inconsistent sequence of imperatives, whose force
structure is consistent, entails any imperative. But this is not the case in the classical
logic.
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6 Conclusion
The aim of this paper is to propose solutions to consistency problem of imperatives and
Ross’s paradox. Imperatives exert imperative forces to the agent. Each force structure
represents a state of imperative forces born by the agent. Under the function T+,
each imperative corresponds to a force structure. Uttering an imperative will add some
forces to the previous force structure, and get a new force structure. The meaning
of imperatives lies in how they change force structures. This is our way to develop
semantics for imperatives in the framework of update semantics.

As Veltman [13] says, it is not always clear where in the field of imperatives the
borderline between semantics and pragmatics should be drawn. In this paper, this
problem is embodied as how we treat compatibility between imperatives: Whether the
compatibility between imperatives should be put into semantics has to be considered.
We didn’t make a choice at this point. What we did is to define consistency of se-
quences of imperatives along each of the two directions. When we count compatibility
in semantics, in deed there are different alternative definitions of compatibility, each
of which corresponds to one type of free choices. It is not clear which one is the best.
We didn’t make any choice among these candidates, and just sorted out them. Based
on different notions of compatibility, we gave several different definitions of semantics
for imperatives. Keeping coincident with semantics, we defined different notions of
validity relative to specific semantics. Ross’s paradox is invalid with respect to any of
these notions of validity.

At the beginning of this paper, we mentioned that some boolean combinations con-
taining imperatives are meaningful, such as pseudo-imperatives and conditional imper-
atives. Based on the work in this paper, it is promising to develop an uniform semantics
to deal with these language phenomena. This will be our future work.

Appendix
In this section we give the proofs of some propositions mentioned previously. For
simplifying the statements, we stipulate some general abbreviations. K1 ./i K2 means
that K1 and K2 are compatiblei. P BK, RBK and T BK respectively express that
P is a consistent path of K, R is a consistent route of K, and T is a consistent track of
K. For any I(φ), we have ∅dI(φ)e1 = ∅dI(φ)e2 = ∅dI(φ)e3 = ∅dI(φ)e4. We use [φ]
to represent ∅dI(φ)ei.

The following three lemmas will be used freely in this section. We only prove the
first one, and the other two can be proved in a similar way.

Lemma 3.1. Let K1 and K2 be any non-empty force structures. For any consistent
path P1 of K1, there is a consistent path P of K1 ∪K2 such that P1 ⊆ P if and only
if there is a consistent path P2 of K2 such that P1 ∪ P2 is consistent.

Proof. (1) ⇐
This direction is trivial.
(2) ⇒
Let P1 BK1. Suppose P BK1 ∪K2 such that P1 ⊆ P . Hence there are P2 BK1

and P3 BK2 such that P = P2 ∪ P3. Then P1 ⊆ P2 ∪ P3. Then P1 ∪ P3 ⊆ P . Then
P1 ∪ P3 is consistent.
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Lemma 3.2. Let K1 and K2 be any non-empty force structures. For any consistent
route R1 of K1, there is a consistent route R of K1 ∪K2 such that R1 ⊆ R if and only
if there is a consistent route R2 of K2 such that R1 ∪R2 is consistent.

Lemma 3.3. Let K1 and K2 be any non-empty force structures. For any consistent
track T1 of K1, there is a consistent track T of K1 ∪K2 such that T1 ⊆ T if and only
if there is a consistent track T2 of K2 such that T1 ∪ T2 is consistent.

Proposition 5.1. K1 ≈2 K2 ⇒ K1 ≈3 K2 ⇒ K1 ≈4 K2.

Proof. (1) K1 ≈2 K2 ⇒ K1 ≈3 K2

For any force structure, each consistent route of it is the union of some consistent
paths of it. The same set of consistent paths generate the same set of consistent routes.
Hence K1 ≈2 K2 ⇒ K1 ≈3 K2.

(2) K1 ≈3 K2 ⇒ K1 ≈4 K2

Suppose K1 ≈3 K2.
Assume that neither K1 nor K2 contains any consistent route. Clearly K1 ≈4 K2

in this case.
Now assume that both of them contain consistent routes.
Firstly we show that any propositional variable occurring in K1 also occurs in K2,

and vice versa. Let p be any variable. Suppose that p appears in K1. Then there is a
choice scope J ∈ K1 such that p or ¬p is in J . We claim that p or ¬p must appears in
some consistent route R. Assume this is not the case. Let R1 be any consistent route
of K1. Then R1 ∪ {p} or R1 ∪ {¬p} is a consistent route of K1, which results in a
contradiction. Since K1 ≈3 K2, we know that the variable p appears in K2. Similarly
we can show that any variable occurring in K2 also occurs in K1.

Suppose T1BK1. Then T1∩(
⋃
K1) is a consistent route ofK1. Hence T1∩(

⋃
K1)

is a consistent route of K2. Since K1 and K2 share the same set of variables occurring
in them, we know that T1 B K2. Similarly we can prove that any consistent track of
K2 is also a consistent track of K1.

In order to prove Proposition 5.2, Proposition 5.3 and Proposition 5.4, we need
the following lemmas, whose proofs are simply omitted.

Lemma 5.1. For any non-empty force structures K1 and K2, P B K1 ∪ K2 if and
only if there are P1 B K1, and P2 B K2 − K1 such that P1 ∪ P2 is consistent and
P = P1 ∪ P2.

Lemma 5.2. For any non-empty force structures K1 and K2, RBK1 ∪K2 if and only
if there are R1 BK1, and R2 BK2 such that R1∪R2 is consistent and R = R1∪R2.

Lemma 5.3. For any non-empty force structures K1 and K2, T BK1 ∪K2 if and only
if there are T1 BK1, and T2 BK2 such that T1 ∪ T2 is consistent and T = T1 ∪ T2.

Proposition 5.2. For any consistent K, K `2 I(φ) ⇒K w2 ∅dI(φ)e2.

Proof. Suppose K `2 I(φ). Then K ./2 [φ], and K ≈2 KdI(φ)e2, that is, K ≈2

K ∪ [φ].
Let P1 BK. P1 BK ∪ [φ], since K ≈2 K ∪ [φ]. Hence there are P3 BK1 − [φ]

and P2 B [φ] such that P3 ∪ P2 are consistent, and P1 = P3 ∪ P2. Clearly P2 ⊆ P1.
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Let P2 B [φ]. SinceK ./2 [φ], there is P3 BK such that P3∪P2 is consistent. Then
there is P5BK− [φ] and P5 ⊆ P3. Then P5∪P2 is consistent. Then P5∪P2BK∪ [φ].
Because K ≈2 K ∪ [φ], we have P5 ∪ P2 BK. Clearly P2 ⊆ P5 ∪ P2.

Proposition 5.3. For any consistent K, K `3 I(φ) ⇔K w3 ∅dI(φ)e3.

Proof. (1) ⇒
The proof of this direction is similar to the proof of Proposition 5.2.
(2) ⇐
Suppose K w3 ∅dI(φ)e3. It can be seen that K ./3 [φ]. So it suffices to prove

K ≈3 KdI(φ)e3, that is, K ≈3 K ∪ [φ].
LetR1 BK. Then there isR2 B [φ] such thatR1∪R2 = R1. ClearlyR1 BK∪ [φ].
Now let RBK ∪ [φ]. Then there are R1 BK and R2 B [φ] such that R = R1∪R2.

It can be seen that any literal occurring in some consistent route of [φ] also occurs in
some consistent route of K. Therefore R1 ∪R2 BK, that is, RBK.

Proposition 5.4. For any consistent K, K `4 I(φ) ⇔K w4 ∅dI(φ)e4.

Proof. (1) ⇒
The proof of this direction is similar to the proof of Proposition 5.2.
(2) ⇐
SupposeK w4 ∅dI(φ)e4. We can see thatK ./4 [φ]. Now we proveK ≈4 K∪[φ].
Let T1 BK. Then there is T2 B [φ] such that T1∪T2 = T1. Therefore T1 BK∪ [φ].
Now let T BK ∪ [φ]. Then there are T1 BK and T2 B [φ] such that T = T1 ∪ T2.

We can see that any variable occurring in [φ] also occurs in K. Hence T2 ⊆ T1. Hence
T = T1 ∪ T2 BK.

Proposition 5.5. For any i (i = 2, 3, 4), and for any K1 and K2, K1 ≈i K1 ∪K2 ⇒
Φ(K1) |= Φ(K2).

Proof. We only prove when i = 2, this is the case. Other proofs are similar to the
following one.

Let A be the set of literals of Y . Θ ⊆ A is a valuation if and only if for any variable
p ∈ Y , one and only one of p and ¬p is in Θ. We can see that a valuation essentially
is a classical model. As we know, Φ(K1) |= Φ(K2) if and only if for any Θ, if Θ is
a model of Φ(K1), then Θ is also a model of Φ(K2). For any Θ and K, Θ is a model
of Φ(K) if and only if there is P BK such that P ⊆ Θ. Therefore Φ(K1) |= Φ(K2)
if and only if for any Θ, if there is P1 BK1 such that P1 ⊆ Θ, then there is P2 BK2

such that P2 ⊆ Θ.
Suppose K1 ≈2 K1 ∪K2. Let Θ be any valuation. Suppose P1 BK1 and P1 ⊆ Θ.

According to the proof of Proposition 5.2, there is P2 BK2 such that P2 ⊆ P1. Clearly
P2 ⊆ Θ. Hence Φ(K1) |= Φ(K2).
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